

Disease Burden Epidemiology Reference Group

David C. Bellinger, PhD Children's Hospital Boston Harvard Medical School Harvard School of Public Health Boston, MA April 4, 2011

Charge to FERG (2006)

- Conduct epidemiologic reviews to support estimates of the global burden of foodborne diseases according to age, sex, and region for a defined list of causative agents of microbial, parasitic, and chemical origin
- 2. Develop causal attribution models to estimate the sources (vectors, pathways) of foodborne diseases
- 3. Increase awareness and commitment among Member States for the implementation of food safety policy and standards
- 4. Develop user-friendly tools for burden of foodborne disease studies at country level to strengthen country capacity to conduct burden of foodborne disease assessments
- Encourage countries to use burden of foodborne disease estimates in cost-effectiveness analyses of prevention, intervention and control measures

Name	Purpose
Child Health Epidemiology Reference Group (CHERG)	Estimate cause-specific morbidity and mortality in children <5 years
Monitoring and Evaluation Reference Group (MERG)	Develop monitoring and evaluation mechanisms for the Roll Back Malaria Partnership
Burden of Disease from Environmental Risks	Provide morbidity, mortality, and DALY estimates for selected diseases associated with environmental risks
WHO Steering and Technical Advisory Group on Neglected Tropical Diseases	Prevent and control NTDs and assess socio-economic impact
Leptospirosis Burden Epidemiological Reference Group (LERG)	Develop global estimates on Leptospirosis
Foodborne Disease Burden Epidemiology Reference Group (FERG)	Provide burden of disease estimates tp enable policymakers and other stakeholders to set appropriate priorities on area of food safety

1

Primary BoD Metric: Disability-Adjusted Life Year (DALY)

- extends concept of potential years of life lost (YLL) due to premature death to include equivalent years of "healthy" life lost (YLD) due to being in states of poor health or disability

 YLL + YLD
- YLL: number of deaths at each age multiplied by global standard life expectancy for each age
- YLD: number of incident cases in period X average duration of disease X disability weight
- disability weight, 0 (perfect health) to 1 (death)
- 3% discounting and non-uniform age weights that give less weight to years lived at young and older ages
- burden of disease is the gap between current health status and ideal health. Where everyone lives into old age free of disease and disability

Disability Classes for BoD Analysis

Class	Severity Weights	Examples
I	0.00-0.02	stunting due to malnutrition, schistosomiasis infection
II	0.02-0.12	amputated finger, asthma, edentulism, mastectomy, severe anemia, stress incontinence
111	0.12-0.24	angina, HIV (not AIDS), infertility, alcohol dependence, low vision, rheumatoid arthritis
IV	0.24-0.36	amputated arm, congestive heart failure, deafness, Parkinson's disease, tuberculosis
v	0.36-0.50	bipolar affective disorder, mild mental retardation, neurological sequelae of malaria
VI	0.50-0.70	AIDS (not on ART), Alzheimer's and other dementias, blindness, Down Syndrome
VII	0.70-1.00	active psychosis, severe depression, severe migraine, quadriplegia, terminal stage cancer

Disease or Injury	DALYs (millions)	Percent of total DALY
1. Lower respiratory infections	94.5	6.2
2. Diarrhoeal diseases	72.8	4.8
3. Unipolar depressive disorders	65.5	4.3
4. Ischemic heart disease	62.6	4.1
5. HIV/AIDS	58.5	3.8
6. Cerebrovascular disease	46.6	3.1
7. Prematurity and low birth weight	44.3	2.9
8. Birth asphyxia and birth trauma	41.7	2.7
9. Road traffic accidents	41.2	2,7
10. Neonatal infections	40.4	2.7
11. Tuberculosis	34.2	2.2
12. Malaria	34.0	2.2
13. COPD	30.2	2.0
14. Refractive errors	27.7	1.8

GBoD 2004 Update: Other Findings

•Years of Life Lost (YLL) 7 times higher in Africa than in highincome countries

•South-East Asia and Africa account for 54% of total BoD, due predominantly to communicable diseases and maternal, perinatal ,and nutritional conditions

•Almost 50% of disease burden in low- and middle-income countries now from non-communicable diseases (ischemic HD, stroke)

•Disease burden in children falls almost entirely in low- and middle-income countries (36% of total burden in world)

Enteric Task Force

- Bacterial toxins (Bacillus cereus, C. perfringens, S. aureus)
- Brucella sp.
- Campylobacter sp.
- Clostridium botulinum
- Hepatitis A
- E Coli.
 - Entero-aggerative
 - Entero-pathogenic
 - Entero-toxigenic
 - Shiga-toxin producing

- Listeria monocytogenes
- Mycobacterium bovisNon cholera vibrio
- pararhemolyticus
- Non cholera vibrio vulnificus
- Vibrio cholera 01/0139
- Norovirus
- Shigella sp.
- Yersinia sp.
- Salmonella sp.
- Non-typhoidal
- typoid

Early Results: Child Mortality (<5) Due to Diarrheal Diseases in Developing Countries

WHO region	Average of propor mortal mortality	diarrhea- tional ity (by stratum)	Estimated diarrhea deaths (thousands)	Uncertainty (thousands)
Africa (AFR)*	MS D	17.8	402	346-455
	MS E	17.5	365	315-413
America (AMR)	MS B	13.3	35	30-40
	MS D	14.9	14	12-16
Eastern Mediterranean (EMR)	MS B	13.4	12	10-14
	MS D	16.9	221	190-250
South-East Asia [*]	MS B	22.3	44	34-53
(SEAR)	MS D	24.5	651	500-793
Western Pacific (WPR)	MS B	13.8	105	90-118
World		18.7	1870	1558-2193
* 78% of all diarrhea de	aths in deve	loping cou	ntries are in AFR and	SEAR regions

Boschi-Pinto et al. Bulletin of the World Health Organization 2008;86:710-717

Parasitic Task Force

- Intestinal protozoa (Giardia, E. histolytica, Cryptosporidium)
- Fasioliasis
- Alveolar echinococcosis
- Cystic echinococcosis
- Cysticercosis
- Trichinellosis
- Aniskiasis
- Toxoplasmosis
- Clonorchiasis and Opisthorciasis
- Ascariasis

Early Results: Alveolar Echinococcosis

- Torgerson et al., PLoS NTD 2010;4(6), e272
 - 18,235 incident cases per year (11,900-28,200), 91% in China
 - Combined age and sex-specific incidence with case fatality rate and disability weight for hepatic carcinoma,
 - estimated DALYs: 666,434 per year (331,000-1.3 million)

Work Initiated on Chemical Contaminants

- · Cassava cyanide
 - acute poisoning, konzo, tropical ataxic neuropathy Aflatoxin
 - acute aflatoxicosis, hepatocellular carcinoma, stunted growth
- Peanut allergen
 - anaphylaxis/death; oral allergy syndrome; skin, GI, respiratory symptoms
- Dioxin, dioxin-like PCBs
- cancer, neurodevelopmental impairment, reduced sperm count
- Lead
 - cognitive impairment, cardiovascular morbidity
 - Cadmium
 - renal disease

Other Chemical Contaminants Under Consideration

- · Methylmercury
- Arsenic
- Organophosphate pesticides
- Seafood toxins (e.g., ciguatera, scombroid, domoic acid, tetrodotoxin, paralytic shellfish poisoning, neurotoxic shellfish poisoning)
- Phytotoxins (e.g., aristolochic acid)
- Manganese
- PBDEs
- Acrylamide
- Melamine

Early Results: Aflatoxin

- From:

- prevalence of chronic HBV infection, by WHO region
- cancer potency factors (slope of D-R curve) for HBV+, HBV-
- estimated aflatoxin exposure based on maize and peanut consumption by WHO region
- Estimated worldwide annual incidence of aflatoxin-induced hepatocellular carcinoma (with/without HBV synergism) to be 25,200-155,000 cases (5-28% of all cases globally)

Aflatoxin-related HCC, by WHO Region

WHO Region	HCC cases attributable to aflatoxin, HBsAg-	HCC cases attributable to aflatoxin, HBsAg+
Africa	2,150-9,300	9,230-50,600
North America	9	2-5
Central/South America	589-2,980	84-2,060
Eastern Mediterranean	446-3,720	341-13,200
SouthEast Asia	1,740-17,300	1,460-27,600
Western Pacific	2,710-6,510	6,310-21,200
Europe	99-184	62-372

Liu & Wu. Environmental Health Perspectives 2010;118:818-824.

Detailed Example of a BoD Analysis for a Chemical: Lead (Fewtrell et al., 2003)

Country/Region Exposure Data Requirements

•geometric mean blood lead level •standard deviation •sample size

 Ideally, exposure data derived from a probability sample that is representative of the entire population
 otherwise extrapolate to population for which disease burden to be calculated (e.g., apply weighting factors)

 Sometimes cohort effect "correction factor" needed
 e.g., adjust for significant changes in population exposure since blood lead data collected (e.g., removal of lead from gasoline)

Criteria for Selecting Key Disease Outcomes

- strength of evidence supporting causal relationship with lead
- availability of quantitative information on association between blood lead and health effect (i.e., doseresponse or exposure-risk relationship)
- Outcome is a well-defined disease (i.e., ICD-10 diagnosis), or can be converted into such

Health Outcomes Selected

- IQ points lost (resulting in mild mental retardation) (children)
- Anemia (children, adults)
- · Gastrointestinal symptoms (children)
- Increased blood pressure (adults) (resulting in ischemic heart disease, cerebrovascular disease, hypertensive disease, other cardiac diseases)

Foundation for Estimating Lead-Associated CVD Morbidity

	Malex					
	u.s.zs mmHg increase					
	IHL.	1.041	1.041	1.002	1.058	1.094
	CVA	1.090	1.055	1.044	1.022	1.029
	Hyperamove disease	1.122	5.102	1,009	1.004	1.007
	United Cardinac diseases	1,010	1.010	1.107	1.000	1.000
	1.875 mining increase	1.110	1.155	1.100	1.048	1.045
alativa viales fan different	10	1.100	1.120	6.472	1.900	1.042
elative risks for different	Harris American			1.141		1.000
	Other cardiac diseases	1.030	1.030	1.028	1.017	1.010
arms of CVD for defined	3.128 media in concer			1.0044	1.4.1.1	
	HU	1229	1226	11/2	1.050	1.0/2
	CVA	1,312	1.212	1,230	1,152	1,104
ncreases in blood	Dypertensive disease	1.779	1.779	1.004	1.192	1.542
	Other cardiac diseases	5.067	5 067	1.044	1 05/9	1057
	3.750 mmHg increase					
ressure by age and	HD	1.270	1.270	1.210	1 112	1.087
rooouro, sy ago ana	CVA	1,300	1:08	1,298	1.185	1.128
• · ·	Hypertensive disease	1.995	1,995	1313	1.335	1.572
ex	Other sandias diseases	1.001	1.001	1.053	1.035	1.020
	Females					
	0.4 mmHg Increase					
	HD.	1.025	1.026	1.021	1.011	1.009
	CVA	1.036	1.086	1.028	1.018	1.013
	Hypertensive disease	1.076	1.075	1.038	1.023	1.017
	Other cardiac diseases	1.008	1.008	1.005	1.001	1 002
	1.2 mmHg increase					
	110	1.001	1.001	1.003	1.025	1.027
	1.995	1.110	1.110	1.1386	1000	11004
	Hypertendive obcede	1.078	1.000	1.017	1010	1.000
	T II IIIIII DODAL DAMAGAN	1.043	1.045	1.417	1.011	1.000
	2.0 000000 0000000	1 120	1.120	1.107	1.055	1.045
	CNA	1.100	1.190	1.147	1.095	1.005
	Managements alteration	7.661	1.664	1 1000	1 1 1 1	1 (20)
	Other cardiac diseases	1.042	1.042	1.025	1.018	1.011
	2.4 mmHn Increases					
	HD	1.159	1,159	1.130	1,070	1.055
	CWA	1,222	1.992	1.179	1.116	1.079
	Hyperlangive doesens	1,995	1,000	1,245	1,145	1,107
	Other cardiac diseases.	1.051	1.051	1.035	1.022	1.013
	 Ischoomic hoart discoso 					

Table 641		Droe	ortion	offe	abad	less les		10	nin		4.140	AD in	oldor		dan
Table A4.	1	in ch	idrer	1 (0-1	yea	rs oli	d) due	to	ead	exp	DSUIT	e in th	le yes	ar 20	00
Paoleo	140	456	Arres	Ameli	Ame	Em	B Feed	5 64	rA i	-8	Furc	SearR	SearO	Work	Worfl
Loss of 10 pole	de los	ans.	ALLER I	10001	Anna		0 044		-		Caro	Jear D	0000	report	repro
0.65	185	191	124	222	23	2 22	18 18	1.0	727	227	236	218	192	141	21/
1.05	65	61	31	104	10	6 17	12 6	2.1	41	00	100	76	61	23	71
3.25	- 34	28	54	50	6		ā 3	8	10	45	57	36	28	6	- 34
3.5	129	95	21	163	17	2 11	4 12	2	5	89	119	65	83	3	- 54
Totals	425	375	192	55	56	7 54	3 45	4 :	283	454	518	395	364		38
Mid mental ret	ardati	on (me	an inci	dence	rate pe	w 1000	childre	n)						-	
Best estimate	7.5	5.8	1.1	13.	2 10	2 3	6 8	0	1.1	5.2	4.9	87	5.5	0.7	23
Lower estimate								2		2.4				0.0	
Linner entimate	9.2	3.0	0.5	1.5	/ 3	a 1	10 4	D	0.2	2.4	2.0	3.8	4.0	0.2	
apper eases						-		-							
	18.0	10.0	2.1	22.0	0 17	2 13	13 13	D	2.7	9.3	8.6	16.3	9.7	1.7	14.(
Table A4.3		ncide and axpor	2.1 ence wom sure	rates to lea	s of (age ad in	2 13 incre s 2 2000	ased 0-79	syst yei	2.7 tolic ars)	9.3 bloc	8.6 id pro	t6.3 essur by	9.7 e in : envi	adult	men
Table A4.3		ncide and axpor	2.1 ence wom sure ence r	rates to lea	s of (age ad in ar 10	2 13 incre 5 2 2000 Amr0	ased 0-79 0	syst yei	2.7 tolic ars)	9.3 bloc cau	8.6 id pri used Eurc	16.3 essur by Sear8	9.7 e in : envi Sear0	adult ronm	men enta
Table A4.3	crease	ncide and axpor	2.1 ence wom sure ence r	rates to lea	s of (age ad in ar 10 Am/B	2 13 incre s 2 2000 Amr0	ased 0-79 0	syst yei	2.7 tolic ars)	9.3 bloc cal	8.6 id pri used EurC	to 3 by Searts	9.7 e in : envi	adult ronm WprA	men enta
Table A4.3	crease	ncide and export Ato	2.1 ence wom sure Afte 191	rates to lea rate p AmrA 1 91	s of (age ad in ar 10 Am/B 221	2 13 incre 5 2 2000 Amr0 225	ased 0-79 0	syst yes	2.7 tolic ars) EurA 243	9.3 bloc car Eure 225	8.5 id pri used EurC 236	16.3 bssur by SearB 218	9.7 e in : envi Sear0 62	1.7 adult ronm WprA	menta mpr8 206
Table A4.3	crease	ncide and and and and and and and and and and	2.1 ence wom sure Attention	rates to lea rate p AmrA 1 91	s of (age ad in ar 10 Anv8 221	2 13 incre 5 2 2000 200 Amr0 225	ased 0-79 0 Em/8 I	syst yes	2.7 tolic ars) EurA 243	9.3 bloc car Eure 225	8.5 id pri used Eurc 236	16.3 bssur by Seart 218 218	9.7 e in : envi 5ear0 62 20	1.7 adult ronm WprA	mental
Table A4.3 Region Incremental in 0.625 mmHg in ter 1.875 mmHg in ter 1.875 mmHg in ter	crease ules, ules	Incide and and axpor ato 185 66	2.1 ence wom sure Afre 191 61	rater to lea rate p AmrA i 91 23	o 17 s of (age ad in er 10 Am/B 221 108	2 13 incre 5 2 2000 200 200 200 200 200 200 200 200	ased 0-79 0 Em/8 8 233 102	5yst yes mrb 181 65	2.7 tolic ars) EurA 243 45	9.3 bloc cau Eure 225 106	8.5 d pro used EurC 236 106	16.3 bssur by SearB 218 76	9.7 e in : envi 5eer0 62 29	1.7 adult ronm WprA 141 17	14.0 menta mpr8 206 61
Region Incremental in 0.625 emitig in a 0.6 emitig in a 1.675 emitig in a 1.275 emitig in a 3.155 emitig in a	Crease ales, ales, ales, ales,	ncide and axpor lincide 185 66 34	2.1 ence wom sure nce r Affe 191 61 28	rates to lea rate p AmA i 91 23 9	a of (age ad in arr10 arr10 221 108 63	2 13 incre 5 2 2000 200 200 200 200 200 200 200 200	ased 0-79 0 Em/8 8 233 102 54	0 5yst yes 181 65 35	227 tolic ars) 243 45 11	9.3 bloc can Eure 225 106 61	8.5 d pn jsed EurC 236 106 57	16.3 bssur by SearB 218 76 36	9.7 e in : envi 5eer0 62 29 97	1.7 adult ronm 141 17 3	14.0 mental mpr8 206 61 24
Table A4.3 Region Incremental in 0.625 mm/g in m 0.6 mm/g in fem 3.125 mm/g in fem 3.125 mm/g in fem	crease tales, ales tales, ales	ncide and axpor lincide 185 66 34	2.1 ence wom sure ance 191 61 28	rates to lea amra i 91 23 9	s of (age ad in ar 10 AmrB 221 108 63	2 13 incre 5 2 2000 200 200 200 200 200 200 200 200	ased 0-79 0 Em/8 8 233 102 54	5 yei 381 65 35	227 tolic ars) 243 45 11	9.3 bloc cal 225 106 61	8.5 id pro used Euro 236 106 57	16.3 bssur by 5ear8 218 76 36	9.7 e in : envi 5ear0 62 29 97	1.7 adult ronm 141 17 3	14.0 mental mpr8 206 61 24
Region Incremental in 0.025 mm/lg in ten 1.875 mm/lg in ten 1.25 mm/lg in ten 3.125 mm/lg in ten 3.25 mm/lg in ten 2.35 mm/lg in ten 2.45 mm/lg in ten	Creasu creasu tales, ales tales, ales	ncide and axpor ato ato ato ato ato ato ato ato ato ato	2.1 ence wom sure Att 191 61 28 98	rates to lea amra p Amra 9 91 23 9 11	0 17 s of i (age ad in er 100 221 108 63 199	2 13 incre ts 2 2000 Amr0 226 106 60 201	ased 0-79 0 Em/8 8 233 102 54 114	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	227 tolic ars) 243 45 11 6	9.3 bloc cal 225 106 61 155	8.5 id pro used Euro 236 106 57 119	16.3 bssur by 5ear8 218 76 36 65	9.7 e in : envi 5eer0 62 29 97 97	1.7 adult ronm 141 17 3 1	14.1 menta 206 61 24 28

Table /	44.4	DA ca	ALYs rdiova	and c ascula	leath ar dis	s cau sease	sed (CV	oy lea D)	ad-ino	duce	d MN	IR an	d		
Region	AfrD	AfrE	AmrA	AmrB	AmrD	EmrB	EmrD	EurA	EurB	EurC	SearB	SearD	WprA	WprB	World
DALYs due	to MMR (i	n thous	sands)												
	871	768	82	1393	225	334	868	55	212	153	582	1912	16	2361	981
DALYs due	to CVD (in	thous	ands)												
IHD	44	38	19	112	12	51	125	30	125	249	49	447	3	86	139
CVA2	58	60	10	134	16	19	70	25	111	196	54	250	6	256	126
HTD ³	16	17	4	46	10	16	34	3	33	22	25	46	0	57	32
OCD4	10	9	2	12	2	4	11	4	11	15	5	32	0	8	12
Totals ⁵	128	124	35	304	40	90	241	63	280	482	133	775	9	407	311
CVD morta	lity (death	s in tho	usands)												
Totals	8	8	2	20	3	6	17	5	22	39	9	57	1	31	22
¹ ischaemi ⁴ other car	c heart di diac disei	sease ases	ŝ	cerebr total ca	ovascul ardiac d	ar disea iseases	ise	³ hy	pertens	ive dise	ease				

Limitations

- Uncertainties inherent in data available
 accuracy of blood lead measurements in sample
 - degree to which sample representative of population as a whole
- Uncertainties associated with method used to adjust exposure data (e.g., cohort effects associated with lead reduction measures)
 - distribution of effect modifiers (e.g., genetics, nutritional status, health status) might differ between populations and so affect risk of disease
- Uncertainties in model parameters (e.g., exposure-response relationships derived from literature)
- Likelihood that some disease burden is associated with outcomes for which no ICD-10 diagnosis

<section-header>

Approach 1: Generic Estimation of
Daily Lead Absorption

	Weight	Water consumption	Air intake	Dust	Digestive absorption	Respiratory absorption	Food consumption ⁵	Indoor- outdoor ratio
	(kg)	(litres/day)	(m³/day)	(µg/day)	(%)	(%)	(g/day)	
Infants, 6 months	5.0	0.5	2.5	10	50	40	1000	
Children, 2 years	13.6	0.5	5.0	50	40	40	1500	0.7
Adults	60.0	1.0	20.0	20	10	40	3300	

Food category	Mean	Intake (r	ng/persor	n per daj	n		
(no. of samples)		Middle Eastern	Far Eastern	African	Latin American	European	
Total cereals (32)	0.011	0.005	0.005	0.004	0.003	0.003	
Citeria fruita (2)	0.007	0.000	0.000	0.000	0.000	0.000	
Dome foults (4)	0.012	0.000	0.000	0.000	0.000	0.001	
Stone truits (3)	0.016	0.000	0.000	0.000	0.000	0.000	
End kines	0.006	0.000	0.000	0.000	0.000	0.000	
Mile of calling pools	0.008	0.001	0.000	0.000	0.001		
and sharp (6)	0.002	0.001					Accumution, lough of los
Eacondany mile	0.013	0.000	0.000	0.000	0.000		 Assumption: levels of lea
products (15)	0.001	0.000					
Ment of cattle pion	0.013	0.000	0.000	0.000	0.001		in U.S. toods accurately
and sheen (14)	0.002						in elei leeus acculatory
Edble effel of callin	0.031	0.000	0.000	0.000	0.000		ostimato lovals also.
cine and sheen (1)	0.000						collinate levelo eloc-
Total vacatable cits	0.034	0.001	0.000	0.001	0.001		where
and falls (1)	0.001						wnere
Dry Bry mant (1)	0.010	0.000	0.000	0.000	0.000	0.001	
Duck upper all (1)	0.008	0.000	0.000	0.000	0.000	0.000	
Busseling undetables (7)	0.009	0.000	0.000	0.000	0.000	0.000	
Ending uppetables	0.013	0.001	0.000	0.000	0.000		
currentite (7)	0.001	0.001					
Total science (E)	0.008	0.000	0.000	0.000	0.000	0.000	
Least uncetables (8)	0.011	0.000	0.000	0.000	0.000	0.001	
Coury regenetations (0)	0.000	0.001	0.000	0.000	0.000		
on-run shits (0)	0.001						
Learning vacantables (2)	0.008	0.000	0.000	0.000	0.000	0.000	
Total roots and	0.010	0.001	0.001	0.003	0.002	0.002	
h.h.am /171							
Counterparty fresh and	0.039	0.000	0.000	0.000	0.000		
former (1)	0.000						
Eleb (%)	0.011	0.000	0.000	0.000	0.000	0.000	
come for							
Total (mg/person per day)		0.012	0.009	0.009	0.010	0.017	
Total(mg/kg bw per week)		0.001	0.001	0.001	0.001	0.002	

id ≩gion,
re

- Whichever approach, use estimated dietary intake to calculate contribution of foodborne lead to blood lead level (empirically, PK model), by age and region, as an estimate of fraction of disease burden attributable to it
 - e.g., if 20% of blood lead level in a region can be attributed to dietary lead intake, 20% of disease burden is assumed to be due to this pathway for purpose of calculating DALYs
 - If so, 12.9 million total DALYs for lead X 0.2 = 2.6 million DALYs

Future of FERG

- FERG originally designed as a 5-year project (2007-2012)
- · Will take longer
- Funding a major issue
 - US CDC, European CDC, RIVM (Netherlands), USDA, governments of UK, Japan, Germany, Ireland, Sri Lanka, as well as in-kind contributions (US FDA)