Vitamin A and Zinc

Saurabh Mehta, M.B.B.S., Sc.D.
Assistant Professor of Global Health and Nutrition
Division of Nutritional Sciences
Cornell University

September 27, 2011

Vitamin A – History

• Sir Frederick Gowland Hopkins discovered that milk prevented death among rats fed purified diets (fat, starch, salts, and purified milk proteins)
 • Fat-soluble A
 • What other nutrient was in Fat-soluble A?
 • World War I: Butter, an important source of fat-soluble A, scarce
 • Nobel Prize 1929 (with Christiaan Eijkman)
 • McCollum and Davis extracted “Vitamin A” from butter, egg yolk and cod liver oil

Vitamin A – Forms & Measurement

• Forms
 • Animal sources - Preformed vitamin A
 • Retinol, retinal
 • Plant sources - Carotenoids
 • accessory pigments - ~600 - only 50 are pro-vitamin A
• Measurement
 • Retinol Activity Equivalent (RAE)
 • 1 RAE = 1 µg Retinol
 • 1 µg beta-carotene = 1/2 RE if dissolved in oil; 1/12 RE if in the diet

Vitamin A – Common Sources

• Sources
 • Liver, fish oils (cod liver oil), organ meats
 • ~6500 µg in liver
 • Cream, butter, fortified milks
 • ~684 µg in butter; 265 µg in cheddar cheese
 • Tropical fruits, carrots, sweet potatoes
 • ~835 µg in carrots; 709 µg in sweet potato; 38 µg in mango
 • Breast milk
 • Supplements

Dietary Reference Intake

• Adults
 • Males: 900 µg/day
 • Females: 700 µg/day
 • Pregnancy: +70 µg/day
 • Lactation: +600 µg/day
Vitamin A - Absorption

- Retinol & Carotenoids easily absorbed in the presence of fat
- Carried in chylomicrons
- Stored in liver as retinyl esters
- Retinol transported in plasma bound to RBP
- Absorption enhanced with increased dietary fat
- Excess intake stored in the liver
 - Developed countries - 200-300 µg/g
 - Less-developed countries - <40 µg/g

Vitamin A - Functions

- Vision - retinal comprises Rhodopsin
- Changes in gene expression and transcription
- Epithelial differentiation
- Structural proteins - skin keratins
- Enzymes - Alcohol Dehydrogenase
- Growth (Bone remodeling)
- Reproduction
- Apoptosis

Vitamin A: Rhodopsin

Vitamin A and Embryonic Development

- Development of structures posterior to the hindbrain
 - Vertebrae and spinal cord
- Development of the limbs, heart, eyes, and ears
- Excess is teratogenic
Vitamin A and Immunity

- Innate Immunity
 - Maintenance of Epithelial Integrity
 - Acute phase response - increase in serum amyloid A and C-reactive protein
 - Enhanced monocyte differentiation and function
 - Increased cytotoxicity of natural killer cells
 - Improved neutrophil function
- Adaptive Immunity
 - Increase in T-cell counts, particularly CD4 cells
 - Increase in the antibody response to vaccines - tetanus toxoid and measles

Assessment of Vitamin A Status

- Clinical Signs
 - Xerophthalmia
 - Functional
 - Night blindness
 - Serum Retinol

Serum Retinol & Vitamin A Deficiency

- Prevalence among children > 1 year of levels ≤ 0.7 µmol/L
- Limitations: Acute Phase Reaction

Acute Phase Reaction

- Response to injury or inflammation
- Acute Phase Proteins
 - Positive - Plasma concentrations increase
 - C-Reactive Protein (CRP)
 - Negative - Plasma concentrations decrease
 - Albumin, Retinol-binding Protein (RBP)

Assessment of Vitamin A Status

- Clinical Signs
 - Xerophthalmia
- Functional
 - Night blindness
- Serum Retinol
 - Not ideal in infection/inflammation
- Dose Response

Relative Dose Response

- After fasting blood (A0), 600 µg retinol
- Breakfast
- 5 hours later second blood sample (A5)
- RDR= (A5-A0/A5)x100
- Vitamin A deficiency: RDR > 20%
- Public health problem if abnormal RDR:
 - mild < 20%; moderate 20-30%; severe >30%
- Limitation: Invasive
Modified Relative Dose Response

- Fasting dose of 1.5 mg of 3,4-didehydroretinol analog
- Single blood sample 4-6 hours later
- MRDR = 3,4-didehydroretinol/retinol
- Vitamin A deficiency MRDR ≥ 0.06
- Public health problem abnormal MRDR
 - mild <20%; moderate 20-30%; severe >30%

Assessment of Vitamin A Status

- Clinical Signs
 - Xerophthalmia
- Functional
 - Night blindness
 - Serum Retinol
 - Not ideal in infection/inflammation
- Dose Response
- Retinol Isotope Dilution
 - Most sensitive biomarker of liver reserves

Biomarkers of vitamin A status relative to qualitative liver reserves of vitamin A.

Deficiency

- Vision
 - Night blindness (rods)
 - Keratomalacia (epithelium)
 - Xerophthalmia

Vitamin A Deficiency: Eye Signs

![Vitamin A Deficiency: Eye Signs](http://chemistry.gravitywaves.com/CHE452/images/ChemVitaminA.gif)
Deficiency

- Vision
- Night blindness (rods)
- Keratomalacia (epithelium)
- Xerophthalmia
- Growth retardation
- Infections
 - Increased number and severity
- Child mortality

Public Health Problem

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Prevalence in population at risk (6 months to 6 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nightblindness</td>
<td>>1%</td>
</tr>
<tr>
<td>Bitot's spots</td>
<td>>0.5%</td>
</tr>
<tr>
<td>Corneal Xerosis/Corneal Ulceration/Keratomalacia</td>
<td>>0.01%</td>
</tr>
<tr>
<td>Corneal Scarring</td>
<td>>0.05%</td>
</tr>
<tr>
<td>Serum Retinol (≤0.70 µmol/L)</td>
<td>>20%; 10-19%; 2-9%</td>
</tr>
</tbody>
</table>

http://www.who.int/vmnis/indicators/retinol.pdf

Global Perspective

Vitamin A Deficiency - Magnitude

- Vulnerable groups
 - Pregnant women
 - Children
 - During periods of rapid growth
 - More than half the countries in the world affected
 - Areas with high infectious disease burden
 - 250 million preschool children
 - 250,000-500,000 vitamin A-deficient children become blind every year
 - 50% of these children die within 12 months of losing their sight

World Health Organization
Vitamin A Deficiency

Based on serum retinol

World Health Organization

Vitamin A Deficiency

Night Blindness

World Health Organization

Global Vitamin A Deficiency

World Health Organization

Vitamin A and Childhood Mortality

• Early 1980s: observational studies in Indonesia (Sommer) - children with xerophthalmia were more likely to die, compared to children without xerophthalmia

• Large community trial in Aceh, Indonesia (Sommer) - children (16 mo.) who received vitamin A supplementation every 6 months were significantly less likely to die, compared to those who did not receive vitamin A

Sommer, 1983; Sommer, 1986

Vitamin A and Childhood Mortality - Preschool

FIGURE 1 Impact of vitamin A on mortality. Relative mortality among children 6 mo-59 mo of age randomized to receive periodic large-dose vitamin A supplementation. Eight major randomized clinical trials, 6 in Asia and 2 in Africa, randomized rural children to receive periodic vitamin A supplements at regular intervals. All of the trials observed clinically and statistically significant reductions in mortality, 19-54%, compared with controls. Reproduced with permission (3).

Sommer A. Nutr 2008;138:1835-1839
Vitamin A and Childhood Mortality

- Led to substantial investments in research, and implementation of periodic vitamin A supplementation to children in 170 countries ($0.02 US $/dose)

- Issues
 - Timing
 - Dosage

Vitamin A and Neonatal Mortality

Table 1. Neonatal Mortality by gender and birth weight

<table>
<thead>
<tr>
<th>Gender</th>
<th>Death rate (per 1,000)</th>
<th>Birth weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>6.51</td>
<td>2.58</td>
</tr>
<tr>
<td>Female</td>
<td>7.50</td>
<td>2.57</td>
</tr>
<tr>
<td>Neonatal</td>
<td>11.05</td>
<td>2.57</td>
</tr>
</tbody>
</table>

Vitamin A and Neonatal Mortality

Imdad A, et al. Cochrane Database of Systematic Reviews 2010;12

Vitamin A and Childhood Mortality - 2 wks to 6 mo

WHO/CHD. Lancet 1998;352:1257-1263

Vitamin A and Neonatal Mortality

Vitamin A and Maternal Mortality

Bangladesh

Vitamin A and Maternal Mortality

Bangladesh

Ghana

Vitamin A and Maternal Mortality

Vitamin A and Infections

Vitamin A Interventions

Crop Modification

- Biocassava Plus
 - 2nd most important source of calories in sub-Saharan Africa
 - #1 food crop - 117 million tonnes in 2008

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Energy (kJ)</th>
<th>Protein (g)</th>
<th>Iron (mg)</th>
<th>Zinc (mg)</th>
<th>Vitamin A (µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice</td>
<td>1721</td>
<td>7.5</td>
<td>0.8</td>
<td>0.0</td>
<td>10</td>
</tr>
<tr>
<td>Golden</td>
<td>1630</td>
<td>6.0</td>
<td>2.7</td>
<td>1.0</td>
<td>3</td>
</tr>
</tbody>
</table>

After references 1501 Food and Agricultural Organisation, PHE estimated daily requirement is 700 µg.

Biocassava Plus

Golden Rice

- New improved variety
 - A cup of golden rice can supply 50% of daily vitamin A requirement in rice-based societies

www.goldenrice.org

Vitamin A Supplementation

- Most common method
- Periodic supplementation after 6 months of age
 - 6-11 months: 100,000 IU
 - 12-60 months: 200,000 IU every 3-6 months

Vitamin A Summary

- Vitamin A deficiency is a major public health problem
- Supplementation in children after 6 months of age reduces morbidity and mortality; at birth, may reduce mortality
- No evidence of benefits of supplementation in mothers, who are not vitamin A deficient
- Role in infections - more in later classes

Zinc - History

- Syndrome of Dwarfism, Hypogonadism, and Anemia in Iran and Egypt
- First cases of human zinc deficiency

Zinc - Dietary Reference Intake

- Men: 11 mg
- Women: 8 mg
 - Pregnancy: 11 mg
 - Lactation: 12 mg

Zinc – Common Sources

- Dietary sources
 - Animal products: meat, seafood, milk
 - Oysters: 76.7 mg per serving (6 medium)
 - Cashews, Almonds
 - Baked beans, chickpeas, peas, kidney beans

Zinc Metabolism

- 10-40% absorbed in small intestine
- ~25% absorbed from mixed diets
- Absorption decreased by:
 - Iron
 - Phytate
 - Malabsorptive states
 - Excreted in the stool
- No specific Zinc store
- needs to be consumed regularly
Zinc - Functions

• Functions
 - Activating cofactor for 70 important enzyme systems
 - Carbonic anhydrase, dehydrogenases, carboxypeptidases
 - DNA and RNA Polymerase
 - Growth
 - Protects against lipid peroxidation; tissue repair/wound healing
 - Immune function
 - Reduced B- and T-cell function
 - Decreased phagocytosis and cytokine production

Shankar and Prasad. AJCN 1998; 68:447S.

Assessment of Zinc Status

• Plasma Zn
 - Responsive to supplementation
• Hair Zn levels
• Functional assays
 - Alkaline phosphatase
 - High risk of deficiency at the population level
 - Prevalence of low plasma zinc concentration ≥ 20%
 - Prevalence of inadequate dietary intake of zinc ≥ 25%
 - Prevalence of stunting in under-five year olds ≥ 20%

Plasma Zn
• Hair Zn levels
 - Responsive to supplementation
• Functional assays
 - Alkaline phosphatase
 - High risk of deficiency at the population level
 - Prevalence of low plasma zinc concentration ≥ 20%
 - Prevalence of inadequate dietary intake of zinc ≥ 25%
 - Prevalence of stunting in under-five year olds ≥ 20%

Zinc Deficiency

• Syndrome of Dwarfism, Hypogonadism, and Anemia in Iran and Egypt
• Congenital Zinc deficiency/Acrodermatitis enteropathica
 - Treatment: Lifelong Zinc supplements
• Malabsorptive states
 - Crohn’s disease
 - Celiac disease
 - Cystic fibrosis

Zinc Deficiency - Symptoms

• Deficiency symptoms
 - Growth failure
 - Primary hypogonadism
 - Skin disease - skin ulcerations, alopecia
 - Impaired taste/smell
 - Cognitive impairment
 - Impaired immunity - recurrent infections

Zinc and Growth

Zinc Deficiency - Symptoms

• Deficiency symptoms
 - Growth failure
 - Primary hypogonadism
 - Skin disease - skin ulcerations, alopecia
 - Impaired taste/smell
 - Cognitive impairment
 - Impaired immunity - recurrent infections

Zinc Deficiency

• Syndrome of Dwarfism, Hypogonadism, and Anemia in Iran and Egypt
• Congenital Zinc deficiency/Acrodermatitis enteropathica
 - Treatment: Lifelong Zinc supplements
• Malabsorptive states
 - Crohn’s disease
 - Celiac disease
 - Cystic fibrosis

Trial in Paris

• 57 breastfeed infants aged 4-9 months, many of African origin
• Randomization: 5 mg Zinc daily or Placebo
• Followed for 3 months

Walravens et al., Lancet 1992; 340:683
Zinc and Growth

| TABLE II—CHANGES IN WEIGHT, LENGTH, AND Z-SCORES FOR ZINC AND PLACERED GROUPS |
|---------------------------------|--------|--------|--------|
	Mean (SE)	p	
Weight (kg)	0.54 (0.07)	0.34 (0.06)	0.303
0-3 g	1.15 (0.09)	1.04 (0.08)	0.007
0.5-7.5 g	1.04 (0.10)	1.04 (0.09)	0.017
Length (cm)	5.5 (0.5)	5.4 (0.5)	0.990
0-2 mm	5.5 (0.7)	5.4 (0.6)	0.556
0-2 mm	4.1 (0.7)	4.0 (0.7)	0.053
Weight for age Z-score	0.19 (0.04)	0.19 (0.06)	0.180
0-2 mm	0.19 (0.07)	0.17 (0.06)	0.005
0-2 mm	0.19 (0.11)	0.11 (0.06)	0.003
Length for age Z-score	0.11 (0.10)	0.00 (0.12)	0.078
0-2 mm	0.15 (0.10)	0.08 (0.08)	0.014
0-7 mm	0.31 (0.13)	0.19 (0.09)	0.007

Zinc and Mortality

- RCT of 1154 full-term small-for-gestational age Indian infants randomized to:
 - Riboflavin
 - Riboflavin, Iron, folate, Ca, and P
 - Riboflavin and Zinc (5 mg)
 - Riboflavin, Zinc, Ca, P, folate, and Iron
- Daily dose between 30 and 284 days of age
- Household visits 6 times a week

Survival curves for zinc-supplemented and non-zinc-supplemented groups.

Mortality RR = 0.32 (0.12, 0.89)

Zinc and Mortality in Pemba

©2001 by American Academy of Pediatrics

Zinc and Mortality in Pemba

Sazawal S et al. Lancet 2007;369:927-934

Global Perspective

Stunting as a Proxy for Zinc Deficiency

Populations at Risk

- Infants, Children, and Pregnant/Lactating Women
- Elderly
- Malabsorptive states

http://www.zincg.org/news/stunting
Zinc Interventions

Options
- Food Fortification
 - Prevention
 - Staple and constant food vehicle - e.g. Wheat or corn flour for zinc
 - Stable fortificant
 - Dose delivered should be adequate for beneficial effect but not toxic to those who already are zinc-replete - Targeted?
- Dietary diversification or Modification
 - Household interventions for improving zinc bioavailability include fermentation, germination, and soaking to remove phytates
 - Supplementation

Zinc Summary
- Critical nutrient for child health and growth
 - More in the talk on Diarrhea and Respiratory Infections
 - Extent of dietary insufficiency is not known globally
 - Nor is the optimal method of improving zinc status....

Acknowledgments
- Christopher P. Duggan