Women’s Nutrition and Reproductive Health

Kathleen M. Rasmussen, ScD
Professor
Division of Nutritional Sciences
Cornell University

October 4, 2011

The story of Lila

Lila’s mother was undernourished, and Lila was born small. She grew up into an undernourished woman, and her daughter was LBW, and undernourished as a child. Lila’s daughter is likely to grow into an undernourished woman, and to have LBW babies.

Nutrition during a woman’s life

Menarche and menstruation

Association of height and fatness with age at menarche (n = 213)

Maternal growth in knee height is associated with lower birthweight among multiparous, but not primiparous, adolescents.

Consequences of early pregnancy for the girl herself
- Unprepared for motherhood in terms of social development
 - Leads to poor mothering behavior
- Unprepared for motherhood in terms of physical development
 - Leads to impaired growth (particularly in pelvic size) or progressive malnutrition
 - May lead to “maternal depletion” during or after her childbearing years
 - Increased risk of prolonged labor leading to obstetric injury or death

Consequences of early pregnancy for society
- If the girls survives, she may contribute less to society
 - Lack of completed education
 - Physical disability from obstetric injury
 - Higher population growth than if childbearing starts later
- If she dies, her productivity is lost and she may also leave orphaned children
How do we know how much of a nutrient is needed?

- Experimental animals
 - Feed an “open-formula” diet with the specific nutrient deleted
 - See if evidence of deficiency develops

Can we do this in people?

- Human subjects
 - Feed them more of what might be missing
 - See if their health improves in some perceptible and (better yet) measurable way
Effect of maternal food supplementation during pregnancy on birthweight: Gambia

Seasonal pattern of birthweight in control and intervention villages in Gambia

Nutritional costs of reproduction

*Adjusted for sex, month, parity and gestational age

Effect of prenatal supplementation on perinatal and neonatal death rates among 2,092 births over 5 y in rural Gambia

Effect of iron/folic acid or multiple micronutrient supplements v. folic acid alone among pregnant women by household wealth index: China, n = 5828 (clustered)

Conclusions

- Some women need protein/energy, some micronutrients and some both
- Undernourished pregnant women may benefit from nutritional supplementation by having larger infants and, in some cases, by gaining weight themselves
 - The increase in birthweight is modest
 - Some interventions also reduce stillbirths and/or components of infant mortality

Nutritional costs of reproduction

<table>
<thead>
<tr>
<th>Life Stage</th>
<th>Energy (kcal/d)</th>
<th>Protein (g/d)</th>
<th>Iron (mg/d)</th>
<th>Vitamin A (μg/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-pregnant (19-30 y old)</td>
<td>Formula based on age, height, weight and physical activity*</td>
<td>46</td>
<td>18</td>
<td>700</td>
</tr>
<tr>
<td>Pregnancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st trimester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd trimester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd trimester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-6 mo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-12 mo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*EER = 350 + (6.67*age [y]) + 9.44*[(9.36*weight[kg]) + 726*height[m]]

**Pregnancy energy deposition

* Milk energy output = weight loss

† Milk energy output

Effect of maternal supplementation from 5-25 weeks postpartum on maternal body weight among undernourished Guatemalan women

<table>
<thead>
<tr>
<th>Duration of lactation (wk)</th>
<th>Maternal weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>42</td>
</tr>
<tr>
<td>15</td>
<td>44</td>
</tr>
<tr>
<td>20</td>
<td>46</td>
</tr>
<tr>
<td>25</td>
<td>48</td>
</tr>
</tbody>
</table>

Effect of maternal supplementation from 5-25 weeks postpartum on maternal body weight among undernourished Guatemalan women

Nutrient Composition of High-Energy (HES) and Low-Energy (LES) Supplements Given to Lactating Guatemalan Women

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>HES</th>
<th>LES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (MJ)</td>
<td>2.14</td>
<td>0.60</td>
</tr>
<tr>
<td>Protein (g)</td>
<td>12.5</td>
<td>3.7</td>
</tr>
<tr>
<td>Carbohydrate (g)</td>
<td>57.5</td>
<td>21.7</td>
</tr>
<tr>
<td>Fat (g)</td>
<td>26.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Vitamin A (IU)</td>
<td>543</td>
<td>15.2</td>
</tr>
<tr>
<td>Niacin (mg)</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>Folic Acid (µg)</td>
<td>51.7</td>
<td>14.5</td>
</tr>
<tr>
<td>Iron (mg)</td>
<td>2.4</td>
<td>1.9</td>
</tr>
<tr>
<td>Zinc (mg)</td>
<td>1.5</td>
<td>1.9</td>
</tr>
</tbody>
</table>

*As derived from the following percentage of macronutrients: HES, protein, 5.9%; carbohydrate, 45.1%; fat, 36.9%; LES, protein, 12.3%; carbohydrate, 72%; fat, 15.6%.

Conclusions

• In studies with strong designs, both protein/energy and micronutrient supplements improve lactation performance (e.g. exclusive breastfeeding, nutrients transferred to the baby)
• Maintenance of exclusive breastfeeding is important for the reduction of infection as well as for birth spacing, which promotes both maternal and child health

Nutrition during a woman’s life

Millenium Development Goals

• Reduce by three-quarters the maternal mortality ratio
• Achieve, by 2015, universal access to reproductive health